Generating Peptide Candidates from Protein Sequence Databases for Protein Identification via Mass Spectrometry

> Nathan Edwards Informatics Research

Protein Identification

- Turns mass spectrometry into proteomics
- Sequence is link to identity, annotation, literature, genomics
 - Proteomics workflows interrogate more than mass
 - Quality of AA sequence databases sequence & annotation varies wildly
- -Protein identification is not BLAST!

LC-MS/MS for Protein Id

LC-MS/MS for Protein Id

- -1 experiment produces 1000's of MS/MS spectra
- Suitable for complex mixtures
- -100's-1000's of proteins identified from a single experiment

-High-throughput protein identification!

Sequence Database Search Engines

- Input: Set of MS/MS spectra and associated parent ion masses
- Output: Peptide sequence for each spectrum
- 1. Generate peptide candidates from a protein or genomic sequence database
- 2. Score and rank the peptide candidates

Sequence Database Search Engines

- Input: Set of MS/MS spectra and associated parent ion masses
- Output: Peptide sequence for each spectrum
- 1. Generate peptide candidates from a protein or genomic sequence database
- 2. Score and rank the peptide candidates

Peptide Candidate Generation

Sequence $\sigma(\text{length n})$, Input: from alphabet A (Additive) mass $\mu(a)$ for a 2 A Query masses M_1, \dots, M_k All (distinct) pairs of query **Output:** masses i and subsequences ω $|\omega|$ with $\sum \mu(\omega_i) = M_i$

Peptide Candidate Generation and Peptide Id

- -Sequence databases contain many individual proteins
- -Must avoid redundant scoring

-Protein context is important

Simple Linear Scan

Output: WVTFISLLFLFSSAYSR

Sequential Linear Scan

- -O(nk) time
- Simple to implement
- Easy to track protein context
- -Poor data locality
- Redundant candidates
- String scanning problem

Simultaneous Linear Scan

Lookup each candidate mass in turn.

Simultaneous Linear Scan

- -O(k log k + n L log k) time
- Simple to implement
- Easy to track protein context
- Better data locality
- Redundant candidates
- -Now a query mass lookup problem!

Overlap Plot from a LC/MS/MS Experiment

Redundant Candidate Elimination

- Must avoid repeat scoring of the same peptide candidate
- Want to avoid generating redundant candidates
- -Non-redundant sequence databases contain lots of substring redundancy!

Substring Density (ρ)

Applied Biosystems

Redundant Candidate Elimination

-Suffix trees represent all distinct substrings of a string.

Applied Biosystems

Redundant Candidate Elimination

-Suffix trees represent all distinct substrings of a string.

AB Applied Biosystems

Suffix-Tree Traversal

- $-O(k \log k + n L \rho \log k)$ time
- -Redundancy eliminated
- Tricky to implement well
- -Memory overhead 1/4 5n
- -Protein context more involved
- -Data locality hard to quantify
- -Must preprocess sequence db
- -Still a query mass lookup problem!

Fast Query Mass Lookup

- With (small) integer weights, $O(M_{max} + k + n L \rho O)$ time is possible
- Use a query mass lookup table!
- Can we achieve this for real weights and non-uniform tolerances?

YES!

Fast Query Mass Lookup

- Must have δ \mathbf{I}_{min}
- Table size is $O(M_{max}/\delta + k I_{max}/\delta)$
- -Practical for typical parameters
- Running time: Table construction + $O(n L \rho O)$ is dominated by size of output

Observations

- Peptide candidate generation is a key subproblem.
- Must eliminate substring redundancy.
- As k increases, peptide candidate generation becomes an interval lookup problem.
- Run time dominated by output size.

Sequence Database Search Engines

- -What if peptide isn't in database?
- -Need richer set of peptide candidates
 - -Protein isoforms, sequence variants, SNPs, alternate splice forms
 - Some have phenotypic or clinical annotations

Swiss-Prot

🍯 NiceProt View of Swiss-Prot: P13746	- Microsoft Internet Explorer	×						
File Edit View Favorites Tools	Help							
- 								
Address Address Address Address	niceprot.pl?1A11 HUMAN							
Google Roser	arch Web 🔹 🔨 Search Site 🛛 RSearch Groups 🖓 Search Directory 🛛 🖏 News 🛛 🖨 Page Info 🗸 🖓 822 blocked 🛛 🖓 Options 👘 Up 🔹 🥒 High	>>						
		1	I					
🎄 ExPASy Home	nage Site Man Search ExPASy Contact us Swiss-Prot	1						
	losted by INCSC US Millitor sites: Australia Bolivia Canada China Korea Switzerland Lawan							
	Search Swiss-Prot/TrEMBL 💽 for 1A11_HUMAN Go Clear	-						
NiceProt View	of Swiss-Prot							
<u>P13746</u>	Printer-friendly view Submit update Quick BlastP search							
[Entry info] [Nan	ne and origin] [References] [Comments] [Cross-references] [Keywords] [Features] [Sequence] [Tools]							
Note: most headings are clickable, eve	n if they don't appear as links. They link to the <u>user manual</u> or <u>other documents.</u>							
Entry mormation	1411 HIMAN							
Drimort accession number	PI2746							
Secondary accession numbers								
Entered in Swigs-Prot in	C15005 C15000 Q25747 Q25055 Q5DC100 Q514115 Q51Q15 Q51Q10 Q51Q17 Release 13 January 1990							
Sequence was last modified in	Release 13, January 1990							
Appositions were last modified in	Release 42. October 2003							
Name and origin of the protein								
Protein name	HI A class I histocompatibility antigen A-11 alpha chain (Precussor)							
Suponum	MHC class I antigen A*11							
Gene name	HI A.A or HI AA							
From	Homo sapiens (Human) [TaxID: 9606]							
Taxonomy	Eukarvota: Metazoa: Chordata: Craniata: Vertebrata: Euteleostomi: Mammalia: Eutheria: Primates: Catarrhini: Hominidae:							
	Homo.							
		-						
		ADDII	20					
			ton	nc				
		nosys	len	112				

Swiss-Prot Variant Annotations

insertion memory simpl	s-Prot	P13746 - Microsoft Internet Explorer						<u>_ 8 ×</u>
file Edit View Fav	orites	Tools Help						100 M
Þ Back 🔹 🔿 👻 🙆	¢) 6	🔹 🐼 Search 👔 Favorites 🛞 Media	3 B- 3 M - 3 A-	强 Folders	X 62 Pa			Links »
idress 🙆 http://us.exp	asy.or	//cgi-bin/niceprot.pl?1A11_HUMAN						▼ @Go
oogle - SwissPROT	-	📸 Search Web 👻 Search Site 🔗	Search Groups 🛛 🖓 Search Directory	🔊 News	🚯 Page Info 👻	P822 blocked	Options 🖻	 Up → 🤌 High ≫
				*		_		_
omments								
FUNCTION:	Invol	red in the presentation of foreign and	tigens to the immune system.					
• SUBUNIT: H	letero	timer of an alpha chain and a beta c.	nam (beta-2-microglobum).					
ALTERNAT	IVE I	RODUCTS						
 Alterna 	tive	plicing [2 named forms] Display	all isoform sequences in Fast	a format				
DT		1			1			
Ivam	е ТГ	L D12746 1			-			
ISOIO	m ID	215740-1 Company displayed in this set			-			
This is	s the i	oform sequence displayed in this en	<u>ttry</u> .		1			
Nam	e	2			1			
Synor	nyms	Long			1			
Isofor	mD	P13746-2			1			
Note.	. Only	produced by allele A*1103.			1			
Featu	res w	ich should be applied to build the is	oform sequence: VSP 008099.					
• FOLIMORP sequence show	m is th	" The following alleles of A-11 are i at of A*1101. ght. It is produced through a collaborati- use by non-profit institutions as long as	cnown: A "1101 (A-11E), A "11 on between the Swiss Institute of Bic : its content is in no way modified an	02 (A-111 informatics d this staten	and the EMBL ou nent is not remove	station - the Eus ed. Usage by and	opean Bioinforma for commercial er	ine tics Institute.
Copyright his Swiss-Prot entry is here are no restrictions quires a license agreer	; on its nent (S	ee <u>http://www.isb-sib.ch/announce/</u> or s	end an email to <u>license(Øisb-sib.ch</u>)					
Copyright his Swiss-Prot entry is here are no restrictions quires a license agreer ross-references	s on its nent (S	ee <u>http://www.isb-sib.ch/announce/</u> or s	EMBL (ConBarts (DDB1))	L Din - C - u				
Copyright his Swiss-Prot entry is here are no restrictions quires a license agreer ross-references	s on its nent (S	ee <u>http://www.isb-sib.ch/announce/</u> or s 	end an email to <u>license@isb-sib.ch</u>) [<u>EMBL / GenBank / DDBJ] [C</u> [EMBL / GenBank / DDBU] [C	oDingSeq	uence] uence]			
Copyright his Swiss-Protentry is here are no restrictions quires a license agreer ross-references	s on its nent (S))]	ee <u>http://www.isb-sib.ch/announce/</u> or s [13111; CAA31503.1; [13112; CAA31504.1; [16841: BAA04117.1:	end an email to <u>locense@usb-sib.ch</u> [<u>EMBL</u> / <u>GenBank</u> / <u>DDBJ</u>] [<u>C</u> [<u>EMBL</u> / <u>GenBank</u> / <u>DDBJ</u>] [<u>C</u> [EMBL / <u>GenBank</u> / <u>DDBJ</u>] [<u>C</u>	loDingSeq loDingSeq loDingSeq	uence] uence] uence]			
Copyright his Swiss-Protentry is here are no restrictions quires a license agreer ross-references	s on its nent (S)] I I I	ee <u>http://www.isb-sib.ch/announce/</u> or s [13111; CAA31503.1; [13112; CAA31504.1; [16841; BAA04117.1; [16842; BAA04118.1;	end an email to <u>icense@isb-sib.ch</u> [<u>EMBL</u> / <u>GenBank</u> / <u>DDBJ</u>] [<u>C</u> [<u>EMBL</u> / <u>GenBank</u> / <u>DDBJ</u>] [<u>C</u> [<u>EMBL</u> / <u>GenBank</u> / <u>DDBJ</u>] [<u>C</u> [<u>EMBL</u> / <u>GenBank</u> / <u>DDBJ</u>] [<u>C</u>	loDingSeq loDingSeq loDingSeq loDingSeq	uence] uence] uence] uence]			
Copyright his Swiss-Protentry is here are no restrictions quires a license agreer ross-references	s on its nent (S J I I I I	ee <u>http://www.isb-sib.ch/announce/</u> or s [13111; CAA31503.1; [13112; CAA31504.1; (16841; BAA04117.1; (16842; BAA04118.1; [16010; AAA65449.1;	end an email to <u>icense@isb-sib.ch</u> [EMBL / GenBank / DDBJ] [C [EMBL / GenBank / DDBJ] [C	oDingSeq oDingSeq oDingSeq oDingSeq oDingSeq	uence] uence] uence] uence] uence]			

Applied Biosystems

Swiss-Prot Variant Annotations

NiceProt View	of Swiss	-Prot: P	13746 - M	icrosoft Internet Explo	'er							_ 8 :
File Edit View Favorites Tools Help												
⇔Back 🔹 ⇒	- 🛞 🛛	1 4	Q Searc	h 📷 Favorites 🛞 Med	lia 🎯 🖪 - 🖉) 🗹 • 🗗 🖄 •	🔁 Folders	ж 🛍 🖻				Links
ddress 🙆 http	o://us.expa	asy.org/	cgi-bin/nicep	rot.pl?1A11_HUMAN								- ∂∞
Google -		-	(Search	Web 👻 💽 Search Site	ℜSearch Groups	Search Directory	News	🚯 Page Info 👻 🗗 822	2 blocked	Notions 🛛	🔁 Up 👻	/ High
, j			-		-	-	· •					
eatures							_					
🦉 🤉 Fea	ature tabl	e view	er			-=	Feature	aligner				
			_				-					
Key	From	То	Length	Description				FTId				
IGNAL	1	24	24									
HAIN	25	365	341	HLA class I his	tocompatibil	ity antigen, A	-11 alpha	chain.				
OMAIN	25	114	90	Extracellular a	lpha-1.							
DOMAIN	115	206	92	Extracellular a	lpha-2.							
DOMAIN	207	298	92	Extracellular a	lpha-3.							
DOMAIN	299	308	10	Connecting pept	ide.							
FRANSMEM	309	332	24									
DOMAIN	333	365	33	Cytoplasmic tai	1.							
CARBOHYD	110	110		N-linked (GlcNA	c) (<i>By si</i> :	milarity).						
DISULFID	125	188		By similarity.								
DISULFID	227	283		By similarity.								
VARSPLIC	337	337		S -> SGGEGVK (i	n isoform 2)			VSP 0080	99			
VARIANT	43	43	*	E -> K (in alle	le A*1102).			VAR 0043	53			
VARIANT	133	133	*	$F \rightarrow L$ (in alle	le A*1107).			VAR 0167	31			
VARIANT	168	168	*	K -> E (in alle	le A*1105).			VAR 0167	32			
VARIANT	175	175		$H \rightarrow R$ (in alle	le A*1103).			VAR 0167	33			
VARIANT	176	176	*	A -> E (in alle	le A*1103).			VAR 0167	34			
VARIANT	187	187	*	R -> T (in alle	le A*1104).			VAR 0167	35			
VARIANT	345	345	. E	T -> S (in alle	le A*1105).			VAR 0167	36			
Sequence in	formatio	on										
Length: 365	AA [This	is the	length of t	the Molecular	weight: 40937 I	Da [This is the MW	of the	CRC64: FE449CE2	D4BF6C	C5 [This is	a checks	sum
unprocessed	precurso	or]	-0	unprocess	ed precursor]			on the sequence]				
- 10)	20		30 40	50	60						
		1		1 1	I	I						
I ATTRADDTT T	11100	** ***	OTHACC	TOND VEVECTODDC 1	CEDDETAILS M	INDTOFUNE				- In	iternet	

Applied Biosystems

Swiss-Prot Sequence

¢	NiceProt	View	of Swiss-Prot: F	913746 - Microsc	oft Internet Expl	orer							P ×
]	File Edil	: Vie	w Favorites	Tools Help									
]	🕀 Back 🕤	• =>	• 🙆 🖄 🖓	🛛 🔇 Search 🛛 🚡]Favorites 🛛 🛞 Mo	edia 🧭 🗟 🕶	🗹 • 🗗	🐴 🕶 🔂 Folders	: X 🖻 🖻			Lin	ks »
]	Address 🧧	http:	//us.expasy.org/	cgi-bin/niceprot.pl?	1A11_HUMAN							• @	'Go
]	Google	•	•	😚 Search Web	🝷 💽 Search Site	RSearch Grou	ips 🛛 😡 Search Dire	ctory 🛛 🐼 News	🚹 Page Info 👻	P822 blocked	Options 📴	🖢 Up 🔹 🥒 Hi	gh »
Γ	Sequen	e inf	ormation										-
	Length: 3	65 A	A [This is the	length of the	Molecula	r weight: 4093	$7{ m Da}$ [This is the	: MW of the	CRC64: FE44 9	9CE2D4BF6(CC5 [This is a	checksum	
	unproces	sed p	recursor]		unproces	sed precursor]			on the sequence	e]			
		10	20	30 I	40	50	60 I						
	MAVMAPI	RTLL	LLLSGALALT	QTWAGSHSMR	YFYTSVSRPG	RGEPRFIAVG	YVDDTQFVRF						
		70	80	90	100	110	120						
	DODALO												
	DEDARS	JRME	PRAPWILQLG	PEIWDQEIRN	VKAQSQIDRV	DEGIERGIIN	QSEDGSHIIQ						
		130	140	150	160	170	180						
	IMYGCDV	/GPD	GRFLRGYRQD	AYDGKDYIAL	NEDLRSWTAA	DMAAQITKRK	WEAAHAAEQQ						
		190	200	210	220	230	240						
	RAYLEGI	RCVE	WLRRYLENGK	ETLQRTDPPK	THMTHHPISD	HEATLRCWAL	GFYPAEITLT						
		250	260	270	280	290	300						
	WQRDGEI	QTQ	DTELVETRPA	. GDGTFQKWAA	VVVPSGEEQR	YTCHVQHEGL	PKPLTLRWEL						
		310	320	330	340	350	360						
	SSOPTI	 PTVG	 TTAGLVLLGA	 VITGAVVAAV	MWRRKSSDRK	GGSYTOLISS	DSAOGSDVSL						
	TACKV												
										P13746 in	FASTA form	<u>at</u>	
	<u>view ent</u> View ent	<u>ry in</u> rv in	<u>original Swis</u> raw text forv	<u>is-Frot format</u> nat (no links)									•
))			interpreter enterody							🥑 Inter	net	
										,			A
												0-4	AP
												XP	BIOS

ied

osystems

Swiss-Prot

- -VarSplic enumerates all variants, conflicts, isoforms
- Swiss-Prot sequence size: - 56 Mb
- -VarSplic sequence size: -90 Mb
- -How many more peptide candidates?

Swiss-Prot Variant Annotations

Feature viewer

Swiss-Prot VarSplic Output

P13746-00-01-00 MAVMAPRTLLLLSGALALTOTWAGSHSMRYFYTSVSRPGRGEPRFIAVGYVDDTOFVRF P13746-01-01-00 MAVMAPRTLLLLSGALALTOTWAGSHSMRYFYTSVSRPGRGEPRFIAVGYVDDTOFVRF P13746-00-00-00 MAVMAPRTLLLLSGALALTOTWAGSHSMRYFYTSVSRPGRGEPRFIAVGYVDDTOFVRF P13746-00-03-00 MAVMAPRTLLLLSGALALTOTWAGSHSMRYFYTSVSRPGRGEPRFIAVGYVDDTOFVRF P13746-01-03-00 MAVMAPRTLLLLSGALALTOTWAGSHSMRYFYTSVSRPGRGEPRFIAVGYVDDTOFVRF P13746-00-04-00 MAVMAPRTLLLLSGALALTOTWAGSHSMRYFYTSVSRPGRGKPRFIAVGYVDDTOFVRF P13746-01-04-00 MAVMAPRTLLLLSGALALTOTWAGSHSMRYFYTSVSRPGRGKPRFIAVGYVDDTOFVRF P13746-00-05-00 MAVMAPRTLLLLSGALALTOTWAGSHSMRYFYTSVSRPGRGEPRFIAVGYVDDTOFVRF P13746-01-05-00 MAVMAPRTLLLLSGALALTOTWAGSHSMRYFYTSVSRPGRGEPRFIAVGYVDDTOFVRF P13746-01-00-00 MAVMAPRTLLLLSGALALTOTWAGSHSMRYFYTSVSRPGRGEPRFIAVGYVDDTOFVRF P13746-00-02-00 MAVMAPRTLLLLSGALALTOTWAGSHSMRYFYTSVSRPGRGEPRFIAVGYVDDTOFVRF P13746-01-02-00 MAVMAPRTLLLLSGALALTOTWAGSHSMRYFYTSVSRPGRGEPRFIAVGYVDDTOFVRF

AB Applied Biosystems

P13746-00-01-00	SSQPTIPIVGIIAGLVLLGAVITGAVVAAVMWRRKSSDRKGGSY <mark>T</mark> QA	ASSDSA	١Q
P13746-01-01-00	SSQPTIPIVGIIAGLVLLGAVITGAVVAAVMWRRKSS <mark>GGEGVK</mark> DRKGGSY <mark>T</mark> QA	ASSDSA	٧Q
P13746-00-00-00	SSQPTIPIVGIIAGLVLLGAVITGAVVAAVMWRRKSSDRKGGSY <mark>T</mark> QA	ASSDSF	١Q
P13746-00-03-00	SSQPTIPIVGIIAGLVLLGAVITGAVVAAVMWRRKSSDRKGGSY <mark>T</mark> QA	ASSDSF	١Q
P13746-01-03-00	SSQPTIPIVGIIAGLVLLGAVITGAVVAAVMWRRKSS <mark>GGEGVK</mark> DRKGGSY <mark>T</mark> QA	ASSDSA	٧Q
P13746-00-04-00	SSQPTIPIVGIIAGLVLLGAVITGAVVAAVMWRRKSSDRKGGSYTQA	ASSDSA	١Q
P13746-01-04-00	SSQPTIPIVGIIAGLVLLGAVITGAVVAAVMWRRKSS <mark>GGEGVK</mark> DRKGGSY <mark>T</mark> QA	ASSDSA	١Q
P13746-00-05-00	SSQPTIPIVGIIAGLVLLGAVITGAVVAAVMWRRKSSDRKGGSYTQA	ASSDSA	١Q
P13746-01-05-00	SSQPTIPIVGIIAGLVLLGAVITGAVVAAVMWRRKSS <mark>GGEGVK</mark> DRKGGSY <mark>T</mark> QA	ASSDSA	١Q
P13746-01-00-00	SSQPTIPIVGIIAGLVLLGAVITGAVVAAVMWRRKSS <mark>GGEGVK</mark> DRKGGSY <mark>T</mark> QA	ASSDSA	١Q
P13746-00-02-00	SSQPTIPIVGIIAGLVLLGAVITGAVVAAVMWRRKSSDRKGGSY <mark>S</mark> QA	ASSDSF	١Q
P13746-01-02-00	SSQPTIPIVGIIAGLVLLGAVITGAVVAAVMWRRKSS <mark>GGEGVK</mark> DRKGGSY <mark>S</mark> QA	ASSDSA	١Q
	**************************************	* * * * * *	: *

Swiss-Prot VarSplic Output

Peptide Candidates

-Parent ion - Typically < 3000 Da - Tryptic Peptides - Cut at K or R -Search engines - Don't handle > 4+ well -Long peptides don't fragment well -# of distinct 30-mers upper bounds total peptide content

Peptide Candidates

-At most 2% additional peptides in ~ 1.6 times as much sequence

Sequence Database	Swiss-Prot	VarSplic
Size	56 M b	90 Mb
30-mers (N ₃₀)	44 Mb	45 Mb
Overhead	27%	97%

Sequence Database Compression

Construct sequence database that is -Complete

- All 30-mers are present
- -Correct
 - -No other 30-mers are present
- -Compact
 - -No 30-mer is present more than once

stems

Sequence Database Compression

Sequence Database	Swiss-Prot	VarSplic
Original Size	55 M b	90 Mb
Distinct 30-mers	44 Mb	45 Mb
Overhead	27%	97%
C ³ Size	53 Mb	54 Mb
C ³ Overhead	19%	20%
C ³ Compression	93%	61%
Compression LB	79%	51%

SBH-graph

ACDEFGI, ACDEFACG, DEFGEFGI

Compressed SBH-graph

ACDEFGI, ACDEFACG, DEFGEFGI

Sequence Databases & CSBH-graphs

- Sequences correspond to paths ACG EF G

ACDEFGI, ACDEFACG, DEFGEFGI Biosystems Sequence Databases & CSBH-graphs

- Complete

 All edges are on some path
 Correct

 Output path sequence only

 Compact

 No edge is used more than once
- -C³ Path Set uses all edges exactly once.

Size of C³ Path Set for k-mers

- Each path costs

 (k-1)-mer + path sequence + EOS

 Sequence database with p paths

 N_k + p k
- Minimize sequence database size by minimizing number of paths
 subject to C³ constraints

Best case senario...

...if CSBH-graph admits an Eulerian path. Sequence database size (k-1) + N_k + 1

How many paths are required if the CSBH-graph is not Eulerian?

Non-Eulerian Components

-Net degree -b(v) = # in edges - # out edges - Total degree surplus $-B_{+} = \sum_{b(v)>0} b(v)$ - For each path - Start node's net degree +1 - End node's net degree -1 - Otherwise, net degree: no change - To reduce all nodes to net degree 0, must have at least B_{+} paths.

Components w/ $B_+(C) == 0$

- -Balanced component must have Eulerian tour, so require exactly one path.
- -m balanced components

Paths Lower Bound

The C^3 path set must contain at least $B_+ + m$ paths.

This lower bound is achievable!

Just add (B₊ - 1) "restart" edges to non-Eulerian components

Achieving Path Lower Bound

AA Sequence Databases

Sequence Database	$egin{array}{c} \mathbf{Sequence} \ \mathbf{Length} \end{array}$	${f Distinct}\ 30-{f mers}$	Overhead
IPI-HUMAN	20358846	12115520	68%
IPI	54145883	29769766	81%
$\mathbf{Swiss-Prot}$	56454588	44374286	27%
Swiss-Prot-VS	89541275	45307827	97%
UniProt	472581860	274510105	72%
UniProt-VS	506796094	275391669	84%
MSDB	481919777	276523755	74%
NRP	495502241	283160529	75%
NCBI-nr	619132252	378721915	63%
UnionNR	674700840	385369671	75%
Union	2157353500	385369671	460%

Minimum Size C³ Sequence Database

Sequence Database	${ m C}^3$ 30-mer Enumeration	Overhead	Compression	Compression Bound
IPI-HUMAN	13854679	14.35%	68.05%	59.51%
IPI	37961385	27.52%	70.11%	54.98%
Swiss-Prot	52662145	18.68%	93.28%	78.60%
Swiss-Prot-VS	54534356	20.36%	60.90%	50.60%
UniProt	337119564	22.81%	71.34%	58.09%
UniProt-VS	338890778	23.06%	66.87%	54.34%
MSDB	342924164	24.01%	71.16%	57.38%
NRP	351600578	24.17%	70.96%	57.15%
NCBI-nr	463517034	22.39%	74.87%	61.17%
UnionNR	473665310	22.91%	70.20%	57.12%
Union	473665310	22.91%	21.96%	17.86%

Implementation

-Suitable for use by Mascot, SEQUEST, ... - FASTA format -All connection to protein context is lost - Must do exact string search to find peptides in original database

Extensions

- -Drop compactness constraint!
 - -Reuse edges rather than starting a new path
 - Similar to the
 - "Chinese Postman Problem"
 - Solvable to optimality using a network flow formulation.

Other Ideas

- We can drop correctness too!
 Equivalent to shortest substring on the set of 30-mers
- -30-mer subsets
 - ...containing two tryptic sites? ...containing Cysteine?
- -Smaller suffix-tree oracles for short queries

